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1, D-40225 D̈usseldorf, Germany

Received 18 November 1996, in final form 11 February 1997

Abstract. The profile of a critical hole in an undercooled wetting layer is determined by the
saddle-point equation of a standard interface Hamiltonian supported by convenient boundary
conditions. It is shown that this saddle-point equation can be mapped onto an autonomous
dynamical system in a three-dimensional phase space. The corresponding flow term has a
polynomial form and in general displays four fixed points, each with different stability properties.
On the basis of this picture we derive the thermodynamic behaviour of critical holes in three
different nucleation regimes of the phase diagram.

1. Introduction

The equilibrium thickness of a wetting layer on a wall is a convenient order parameter
for wetting phase transitions [1]. Figure 1 shows the phase diagram for a first-order
wetting transition in terms of temperatureT and chemical potentialµ [1]. Above the
coexistence valueµc of the two-fluid bulk system the layer thickness is infinite whereas for
h ≡ µ−µc < 0 it is finite. In the limith→ 0 from below the layer thickness continuously
runs to infinity above the wetting temperatureTw, but has an infinite jump across the partial-
wetting lineT < Tw, h = 0. A finite jump from a thin to a thick layer occurs when the
prewetting lineTp(h) is crossed from the regionT < Tp(h) to T > Tp(h). This jump
runs to infinity whenTw is approached along the prewetting line and it disappears at the
prewetting critical pointTpc.

A metastable wetting state can be generated by overheating a thin layer fromT < Tp(h)

into a nucleation region bounded byTp(h) and an upper spinodal lineTus(h). The transition
to the stable thick-layer configuration occurs via the random formation of droplets on the
thin layer and growth of the supercritical droplets [2]. Close to the prewetting line the
critical droplets have a cylindrical shape with a diverging radius atTp(h). This has been
pointed out by Joanny and de Gennes [3] who have chosen the name ‘pancake droplets’ for
this kind of critical nuclei.

It is also possible to undercool a thick wetting layer fromT > Tp(h) into a second
nucleation region located betweenTp(h) and a lower spinodal lineTls(h). In this case the
critical nuclei are holes in the layer which nearTp(h) are mirror images of the pancake
droplets. Close to the partial-wetting line, however, the critical holes have a funnel-shaped
profile with a diverging depthFc but a finite inner radiusRc ath = 0. A third regime exists,
adjacent to the wetting transition pointT = Tw, h = 0, at whichFc andRc both diverge.
We will refer to these regimes as the pre-, partial-, and complete-dewetting regime.
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Figure 1. T ,µ-phase diagram for a first-order wetting transition. All symbols are explained
in the introduction. The shaded area is the complete-dewetting regime, separated by crossover
lines from the partial- and pre-dewetting regimes.

In order to calculate the near-coexistence behaviour ofFc, Rc, and of the excess free
energyEc of the critical hole in all regimes, we need some general information on the
critical-hole profile. This is extracted from the saddle-point equation of a standard interface
Hamiltonian [4] (which also determines the profile of critical droplets). As a general result
this approach confirms that the excess free energy of critical nuclei diverges at the first-order
linesh = 0, T 6 Tw andT = Tp(h), whereas it decreases to zero at the spinodal lines [5].

For macroscopic critical nuclei in the regionh ≈ 0, T 6 Tw the saddle-point equation
can be mapped onto an autonomous dynamical system in a three-dimensional phase space.
The flow term of this system is polynomial and has a surprisingly rich fixed-point structure
in the subspace of critical holes. One of these fixed points only exists, if the bulk dimension
d of the system is smaller than some critical dimensiond1. In this case two different sets
of physical trajectories appear in the flow diagram which forT 6 Tw correspond to critical
holes ath = 0, andh 6= 0, respectively. Only the latter continue to exist ford > d1,
and the asymptotic behaviour of their trajectories determines theT , h-dependence of the
macroscopic quantitiesFc, Rc, andEc. The existence of critical nuclei at a first-order line is
somewhat unusual, and for critical droplets ruled out by Derrick’s theorem [6]. Therefore,
although of no direct experimental relevance, the properties of critical holes at coexistence
are also discussed in the following.

2. Interface model for critical holes

Our calculations are based on the Hamiltonian [4]

H [f ] =
∫

dd−1x
[γ

2
(∇f )2+ V (f )− hf

]
(2.1)

wheref (x) is the local thickness of the wetting layer on the(d − 1)-dimensional planar
wall of the system. The gradient term describes long wavelength capillary excitations with
a stiffness constantγ . V (f ) is an effective potential of the form shown in figure 2, where
the repulsive core simulates the wall, andV (f ) → 0 for f → ∞. The height of the
minimum atf00 changes with temperature, and, in a mean-field picture,V (f00) = 0 at
T = Tw. Therefore,S ≡ V (f00) can be used to measure the temperature distance from the
wetting transition point and coincides with the spreading coefficient at coexistence [1].
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Figure 2. The effective interface potentialV (f ), whereS ≡ V (f00).

Figure 3. The full potential8(f ) ≡ V (f ) − hf . Here,f1 is the equilibrium thickness of the
undercooled layer, andf1 − f0 is the depth of the critical hole.

In the full potential8(f ) ≡ V (f )−hf the minimum ofV (f ) at f = ∞ is, for h < 0,
shifted to a finite valuef1, as in figure 3. Along the prewetting line the two minima of
8(f ) have equal height, and they coincide at the prewetting critical point. The situation of
figure 3 corresponds to some point in the lower nucleation region of figure 1. At the lower
spinodal linef1 has reached the local maximum in8(f ), changing it into an inflection
point.

Under the assumption of cylinder symmetry of critical holes, their radial profilef (r)

obeys the saddle-point equation

γf ′′(r)+ d − 2

r
γf ′(r) = dV/df (r)− h. (2.2)

Convenient boundary conditions for such objects aref ′(r = 0) = 0 andf (r = ∞) = f1

for h < 0 or f ′(r = ∞) = 0 for h = 0, respectively. Nontrivial solutions of the latter type
can in fact exist in a certain range of dimensions, as discussed below.

In order to prove the existence of critical holes inside the nucleation region ath < 0,
we adopt an argument by Coleman [7]. He considered (2.2) as an equation of motion for
a fictitious particle with positionf moving in timer in a potential−8(f ) in the presence
of a time-dependent friction term. At timer = 0 the particle has to start with zero velocity
from a positionf0 such that asymptotically forr → ∞ it comes to rest on top of the
hill at f1, generating, for example, the critical-hole profile of figure 4. The existence of
this marginal solution is implied by continuity from that of undershooting and overshooting
solutions. Undershooting solutions obviously are produced by choosing a starting position
sufficiently close to the local minimum in−8(f ) where the particle then eventually comes
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Figure 4. The profile of the critical hole corresponding to the potential in figure 3.

to rest. On the other hand, by choosing the starting position sufficiently close to the higher
maximum in−8(f ), the particle spends an arbitarily long time to reach a positionf ∗ < f1,
where8(f ∗) = 8(f1). This allows us to neglect the friction term in the particle motion
for f > f ∗ so that by energy conservation the particle will overshoot the hill atf1.

Near interior points of the prewetting line,8(f ) has a double-well form which for the
radial profile of a critical hole leads to a kink solution. In the limitT → Tp(h) the position
Rc of the turning point of the kink runs to infinity, resembling the behaviour of a pancake
droplet.

When some point on the lineh = 0, T 6 Tw is approached,f1 and consequently the
critical depthFc ≡ f1− f0 diverges. In this regime the critical-hole profile at macroscopic
distances from the wall is determined by the asymptotic behaviour ofV (f ) for f → ∞.
For long-range molecular interactions this reads

V (f ) = Af 1−σ for σ > 1 (2.3)

whereA is the Hamaker constant, andσ = d or σ = d + 1 for nonretarded or retarded
van der Waals forces, respectively [1]. By extrapolation the macroscopic profileF(r) of a
critical hole can then be defined as the solution of the differential equation

γF ′′(r)+ d − 2

r
γF ′(r) = −A(σ − 1)F−σ − h (2.4)

with the new boundary conditionsF(r = Rc) = 0 andF(r = ∞) = Fc at h < 0 or
F ′(r = ∞) = 0 at h = 0, respectively. Undershooting and overshooting solutions can still
be created, now by controlling the initial velocityF ′(r = Rc).

Since forr → Rc the friction term and the fieldh can be neglected in (2.4), we find
the result

F(r) =
[
A

2γ
(σ + 1)2

] 1
σ+1

(r − Rc) 2
σ+1 (2.5)

which is asymptotically valid for allh 6 0.
For r →∞ andh 6= 0 a linear expansion of (2.4) inFc − F(r) leads to a Bessel-type

differential equation. This implies the asymptotic form

F(r) = Fc
[

1− C
( r
R∗
)2−d

2
e−r/R

∗
]

(2.6)

where R∗ ≡ [
Aσ(σ − 1)/γ

]−1/2
F
(σ+1)/2
c , and C is an integration constant. If, as an

approximation to the full solution of (2.4), expressions (2.5) and (2.6) and their derivatives
are matched at some valuer = Rm, it turns out thatRm ∼ R∗ andC is of the order of 1.
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For r → ∞ andh = 0 the left-hand side of equation (2.4) dominates ford < d1(σ )

where

d1(σ ) ≡ 3− 2

σ + 1
(2.7)

and leads to the behaviour,

F(r) = F ∗D
(
r

Rc

)3−d
. (2.8)

Here the amplitudeF ∗ ≡ [
A(σ + 1)2/8γ

] 1
σ+1 R

2
σ+1
c has been adopted from the previously

derived [8] exact solution(
r

Rc

)2

−
(
F

F ∗

)σ+1
2

= 1 (2.9)

of (2.4) ath = 0 in the dimension

d0(σ ) ≡ 3− 4

σ + 1
(2.10)

so thatD = 1 in d = d0(σ ). Due to the boundary conditionF ′(r = ∞) = 0 the asymptotic
form (2.8) implies that critical holes ath = 0 only exist in dimensions whered > 2. The
necessity of the previously mentioned additional conditiond < d1(σ ) will become clear
through the following analysis.

3. Mapping to a dynamical system

We now define the dimensionless quantities

X ≡ rF ′(r)
F (r)

Y ≡ σ 2− 1

2

A

γ

r2

Fσ+1(r)

Z ≡ −1

2

h

γ

r2

F(r)

(3.1)

and consider their dependence on the time-like variable

t ≡ ln
r

r1
(3.2)

wherer1 is an arbitrary reference scale. Due to (2.4) we find the set of differential equations

Ẋ = (3− d)X −X2− 2

σ + 1
Y + 2Z

Ẏ = 2Y

(
1− σ + 1

2
X

)
Ż = 2Z

(
1− 1

2X
)

(3.3)

which has the four fixed points

X0 = Y0 = Z0 = 0

X1 = 2

σ + 1
Y1 = d1(σ )− d Z1 = 0

X2 = 3− d Y2 = Z2 = 0

X3 = 2 Y3 = 0 Z3 = d − 1.

(3.4)
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Figure 5. The flow diagram of the dynamical system (3.3) with all fixed points and their
principal directions. The shaded region is the sector in the planeX = 2/(σ + 1) penetrated by
the physical trajectories forh < 0.

For 1< d < d1(σ ) the fixed points (3.4) are all located in the subspaceX > 0, Y > 0,
Z > 0, where the critical-hole trajectories occur (whereasF ′(r) 6 0 impliesX 6 0 for
critical droplets). The subscripts of the fixed-point coordinates indicate the numbers of
attractive principal directions of each of these points.

In the planeZ = 0 the fixed pointP1 in figure 5 attracts the physical trajectories coming
from X = Y = ∞ which then either run to the droplet regionX < 0 or to the more stable
fixed pointP2. The first possibility corresponds to undershooting solutions of the saddle-
point equation whereas the second one describes solutions obeying the boundary conditions
for critical holes ath = 0. In fact, the fixed-point valueX2 = 3− d in connection with
the definition (3.1) ofX reproduces the asymptotic behaviour (2.8) up to an undetermined
prefactor. In the limitd → d1(σ ) the fixed pointP1 merges intoP2, and in figure 5 the
right section of the basin of attraction ofP2 collapses to zero, so that critical holes ath = 0
no longer exist ford > d1(σ ).

If h < 0, the physical trajectories approachP1 from X = Y = Z = ∞ but now have
three options to continue. Most of them either run into the droplet region or to the most
stable fixed pointP3, representing respectively undershooting and overshooting saddle-point
solutions where the latter behave asF(r) = −hr2/

[
2(d − 1)γ

]
for r →∞. The basins of

attraction for these two sets of trajectories are separated by a surface which is the support
of the critical-hole trajectories.

For d < d1 the trajectories for critical holes ath < 0 have, contrary to our previous
belief [9], no chance to come close to the fixed pointP2 (which led to the erroneous result
(9) in [9]). This is a consequence of the fact that, in agreement with (2.6), these trajectories
for t → ∞ have to run toX = 0, Y = Z = ∞. According to (3.3) they must, however,
penetrate the planeX = 2/(σ + 1) above the lineZ = (2/(σ + 1))(Y − Y1), and for
X > 2/(σ + 1) obey the conditionẎ 6 0. This is incompatible with a visit of the fixed
pointP2 which consequently is supposed to have essentially no influence on the critical-hole
profile for h < 0.
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4. Critical holes at bulk coexistence

At bulk coexistenceh = 0 there appears an infinite set of flow lines in the(X, Y )-plane
running fromX = Y = ∞ to the fixed pointP2. This means that the saddle-point
equation (2.4) forh = 0 has infinitely many solutions which obey the boundary conditions
for critical holes. Only one of these solutions will, however, correspond to a true saddle
point in the variational principleδH = 0.

The situation can most easily be analysed in the special dimensiond = d0(σ ). Then,
in terms of the variables

η(t) ≡
(
r

Rc

)− 2
σ+1

F(r) t ≡ ln
r

Rc
(4.1)

the saddle-point equation (2.4) assumes the form [8]

η̈ = ∂

∂η

[
A

γ
R2
c η

1−σ + 2

(σ + 1)2
η2

]
. (4.2)

This again can be considered as an equation of motion for a fictitious particle, now without
a friction term. As a consequence the particle energy

ε ≡ 1

2
η̇2− A

γ
R2
c η

1−σ − 2

(σ + 1)2
η2 (4.3)

is conserved.
Equation (4.3) can be rewritten as

(x − 1)2 = 2

σ − 1
y − λ σ + 1

σ − 1
y

2
σ+1 + 1 (4.4)

where

x ≡ X

X1
y ≡ Y

Y1
λ ≡ − ε

ε0
(4.5)

and ε0 ≡ [2/(σ 2 − 1)][(σ − 1)(σ + 1)2AR2
c /(4γ )]

2/(σ+1) is minus the maximum value of
the potential energy in (4.3). Withλ taken as a parameter, (4.4) analytically describes the
full flow pattern of the system which is depicted in figure 6. Obviously this pattern is
symmetric with respect to the linex = 1. For x = y = 1 one obtains the parameter value
λ = 1 which consequently belongs to the separatrix running through the fixed pointP1 (see
figure 5). This corresponds to zero kinetic energy of the fictitious particle when it passes
the maximum of the potential in (4.3). Valuesλ > 1 accordingly belong to undershooting
solutions whereas forλ < 1 one finds an infinite set of solutions obeying the critical-hole
boundary conditions. Profile (2.9) leads to the valueλ = 0, i.e. a simple parabola for the
corresponding flow line.

We will now argue that (4.4) withλ = 0 just corresponds to a true saddle point ofH .
For this purpose we use (3.1) (ath = 0) and (4.5) to map the energy functionalH [F(r)]
into the formH = �d0−1

[
(σ 2− 1)AY σ1 /(2γ )

]2/(σ+1)
u[x] where

u =
∫ ∞

0
dy

y−
σ+3
σ+1

2(x − 1)

[
1

2
x2+ 1

σ − 1
y

]
(4.6)

where�d0−1 is the volume of the(d0−1)-dimensional unit sphere. The variational principle

δu

δx(y)
= 1

4
y−

σ+3
σ+1

1

(x − 1)2

[
x2− 2x − 2

σ − 1
y

]
= 0 (4.7)

(which does not determine the flow velocitiesẋ, ẏ) then asserts the above statement. Since
the variational equation has an algebraic form, the parameterλ (appearing as an integration
constant in (4.3)) is also optimized.
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Figure 6. The flow pattern corresponding to equation (4.4) for the limiting caseσ = 3 (note
thatF ′(r = ∞) = 0 for σ = 3).

5. Scaling behaviour of critical holes

In order to calculate the quantitiesFc, Rc, andEc for a critical hole at arbitrary values of
h, we use the definitions

8′(Fc + f0) = 0 Ec ≡ H [f (r)] −H [Fc + f0] (5.1)

and extractRc from the relation

8(Fc + f0)−8(f0) = (d − 2)γ
∫ ∞

0
dr
(f ′(r))2

r
(5.2)

implied by the saddle-point equation (2.2). The second equation (5.1) can be slightly
simplified by the use of the virial theorem which states that the potential-energy part in
(5.1) is (3 − d)/(d − 1) times the kinetic part. This follows from the scaling property
∂H [f (αr)]/∂α|α=1 = 0 which in turn is implied by the variational principleδH [fα(r)] = 0
for the special set of functionsfα(r) ≡ f (αr). As a result of this procedure we eventually
find

Ec = 1

d − 1
�d−1γ

∫ ∞
0

dr rd−2(f ′)2 (5.3)

where�d−1 is the volume of the(d − 1)-dimensional unit sphere.
Close to the lineh = 0, S 6 0, we can in (5.1)–(5.3) neglect the microscopic increment

f0 to Fc, replaceV (f ) by its asymptotic form (2.3), and insert forf (r) the macroscopic
profile F(r). This leads to the result

Fc = 1

(σ − 1)A
|h|− 1

σ (5.4)

for h→ 0, and, in leading order, to the equations

AF 1−σ
c − hFc − S = (d − 2)γ

∫ ∞
Rc+r0

dr r−1(F ′)2(r) (5.5)

Ec = 1

d − 1
�d−1γ

∫ ∞
Rc+r0

dr rd−2(F ′)2(r). (5.6)

Here a cut-off lengthr0� Rc has been introduced in order to cure the artificial singularity
which, due to the extrapolation (2.5), occurs atr = Rc in the caseσ > 3.

In (5.5) and (5.6) we now split off integrals running fromRc+ r0 to (1+ λ)Rc wherein
the choice 0< λ � 1 allows us to use (2.5). In the remaining integrals we transform to
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the scaled variablesr/R∗ for h < 0 andr/Rc for h = 0, suggested by the asymptotic forms
(2.6) and (2.8). This leads to a power inR∗ andRc, respectively, where the cofactors are
assumed to be finite in the limith→ 0 andS → 0. The latter assumption is supported by
the analysis of section 3 which leads us to expect that no further singularities will occur in
addition to those implied by (2.5)–(2.8).

On a pathS = constant in the partial-dewetting regime, the procedure just described
leads for|h| → 0 to a constant value ofRc, and to

Ec ∼ F
σ+1

2 (d−d0(σ ))
c (5.7)

with Fc given by (5.4). AtS = 0, i.e. in the complete-dewetting regime, we find the
behaviour

Rc ∼ F
σ+1

2
c for σ < 3

Rc ∼ F 2
c lnFc for σ = 3

Rc ∼ Fσ−1
c for σ > 3

(5.8)

where againFc has the form (5.4). Moreover, in this regime we obtain

Ec ∼ Rd−d0(σ )
c for σ < 3

Ec ∼ Rd−2
c lnRc for σ = 3

Ec ∼ Rd−2
c for σ > 3.

(5.9)

For critical holes ath = 0 the only nontrivial result is the behaviour

Rc ∼ |S|−
σ+1

2(σ−1) for σ < 3

Rc ∼ |S|−1 ln |S| for σ = 3

Rc ∼ |S|−1 for σ > 3

(5.10)

for |S| → 0.
In the pre-dewetting regime the asymptotic behaviour of the pancake critical holes

will, with growing distance fromTw, increasingly depend on the microscopic details of the
potential8(f ). We therefore have to go back to relations (5.2) and (5.3), in which we
then use the fact thatf ′(r) is sharply peaked at the valuer = Rc. This leads for any path
S = constant to a constant value ofFc at the prewetting lineh = hp(T ), and to the relations

Rc ∼ (hp(T )− h)−1 (5.11)

Ec ∼ (hp(T )− h)2−d (5.12)

which are identical to those for pancake droplets [3]. When the wetting transition point is
approached along the prewetting line,Fc diverges as in (5.4).

The crossover lines, separating the pre- and partial-dewetting regime from the
intervening complete-dewetting regime (see figure 1), are of the form|h| ∼ |S| σ

σ−1 . This is
implied by equation (5.5) through which the spreading coefficientS enters the calculation
in the formS + constant|h| σ−1

σ .
Some of the results (5.4), (5.7)–(5.12) should be accessible to experiments, except

(5.10) which strictly only applies tod < d1(σ ) and therefore is mainly of theoretical
interest. In the case where capillary forces compete with gravitational forces, the critical-
hole radiusRc has recently been measured [10]. We expect that similar measurements,
verifying equations (5.8) and (5.4), are also possible if van der Waals forces dominate the
gravitational forces. For such situations, the qualitative observation of the nucleation of
holes in wetting layers has also been reported in recent literature [11]. In a second set
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of experiments it has been observed that undercooled wetting layers have an anomalously
long lifetime τ [12]. This has previously been explained [13] by the relation lnτ ∼ Ec/kT
whereEc diverges atµ = µc. It should be possible to verify prediction (5.9) quantitatively
by similar undercooling experiments at different values ofµ.
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